matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenGeraden und Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - Geraden und Ebene
Geraden und Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden und Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 Sa 18.05.2013
Autor: lukky18

Gegeben sind die Ebene E: 2x - y-2z=8 und die Gerade g:
2                   1
3    plus r      1
-5                  0

Bestimmen Sie diejenigen Punkt auf g, die von der Ebene E den Abstand 3 haben.

Lösung
Die neuen Ebenengleichungen habe ich errechnet Sie lauten
2x-y-2z=17
und  2x-y-2z= -1

Ich kann die Punkte auf g nicht bestimmen. Kann mir jemand helfen?
Danke
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Geraden und Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 Sa 18.05.2013
Autor: Diophant

Hallo und

[willkommenvh]

Vorneweg: du solltest versuchen, die LaTeX-Syntax zu verwenden, um mathematische Notationen anzugeben. Ist diese Geradee gemeint:

g: [mm] \vec{x}=\vektor{2\\3\\-5}+r*\vektor{1\\1\\0} [/mm]

?

> Gegeben sind die Ebene E: 2x - y-2z=8 und die Gerade g:
> 2 1
> 3 plus r 1
> -5 0

>

> Bestimmen Sie diejenigen Punkt auf g, die von der Ebene E
> den Abstand 3 haben.

>

> Lösung
> Die neuen Ebenengleichungen habe ich errechnet Sie lauten
> 2x-y-2z=17
> und 2x-y-2z= -1

Wie du hier vorgegangen bist, kann man nicht erkennen. Die beiden Ebenen haben von der Ebene E aber tatsächlich den Abstand 3LE.

>

> Ich kann die Punkte auf g nicht bestimmen. Kann mir jemand
> helfen?

Du könntest jetzt einfach die Schnittpunkte von g mit den beiden von dir ermittelten Geraden berechnen. Oder du gehst folgendermaßen vor:

Der Abstand Punkt-Ebene im [mm] \IR^3 [/mm] berechnet sich zu

[mm] d=\bruch{|ax+by+cz+d|}{\wurzel{a^2+b^2+c^2}} [/mm]

wobei

[mm] \vec{n}=\vektor{a\\b\\c} [/mm]

der Normalenvektor der Ebene E mit E: ax+by+cz+d=0 und

P(x|y|z)

der fragliche Punkt ist.

Schreibe deine Geradengleichung um als allgemeinen Geraden punkt, setze sie in die obige Formel ein zusammen mit dem gegebenen Normalenvektor und setze das ganze gleich 3.

Der zweite Weg wäre eher der übliche, aber du hast ja auch einen gangbaren Weg gefunden.


Gruß, Diophant

Bezug
                
Bezug
Geraden und Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 So 19.05.2013
Autor: lukky18

Danke für deine schnelle Antwort.
Ich komme aber mit deiner Antwort nicht ganz klar.

ich habe die Ebenegleichung (neue) errechnet indem ich

die Formel  d= (12r1-r2-2-r3-8) : Wurzel 9  = (k-8) :3
und dann (k-8):3= 3 gesetzt
und so die Ebenengleichungen 2x-y-2z=17
                                           2x-y-2z=-1  errechnet.

Wie schreibe ich die Geradengleichung um als allgemeiner Geradenpunkt?
Kannst Du mir bitte nochmals helfen?
Wie kann ich die LATeX-Syntax verwenden?

Bezug
                        
Bezug
Geraden und Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 So 19.05.2013
Autor: MathePower

Hallo lukky18,

> Danke für deine schnelle Antwort.
>  Ich komme aber mit deiner Antwort nicht ganz klar.
>  
> ich habe die Ebenegleichung (neue) errechnet indem ich
>  
> die Formel  d= (12r1-r2-2-r3-8) : Wurzel 9  = (k-8) :3
>  und dann (k-8):3= 3 gesetzt
>  und so die Ebenengleichungen 2x-y-2z=17
>                                             2x-y-2z=-1  
> errechnet.
>  
> Wie schreibe ich die Geradengleichung um als allgemeiner
> Geradenpunkt?


Es ist doch

[mm]\vec{x}=\pmat{x \\ y \\ z}=\vektor{2\\3\\-5}+r\cdot{}\vektor{1\\1\\0}[/mm]

Daraus ergibt sich: [mm]x=2+r*1, \ y=3+r*1, \ z=-5[/mm]



>  Kannst Du mir bitte nochmals helfen?
>  Wie kann ich die LATeX-Syntax verwenden?


Indem Du den Formeleditor benutzt.


Gruss
MathePower

Bezug
                                
Bezug
Geraden und Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:48 So 19.05.2013
Autor: lukky18

Vielen Dank jetzt habe ich die Punkte errechnen können

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]