matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperIrreduzibilität von Polynomen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Irreduzibilität von Polynomen
Irreduzibilität von Polynomen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Irreduzibilität von Polynomen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 So 04.07.2010
Autor: skoopa

Aufgabe
Sei [mm] f:=X^4+3X^3+X^2-2X+1 \in \IZ[X] [/mm] ein Polynom.
Folgern Sie: f ist in [mm] \IQ[X] [/mm] irreduzibel.

Hallo Freunde der Algebra!
Ich bearbeite grad schon seit einiger Weile die obige Aufgabe. Leider komme ich nicht weiter. Ich habe eine Lösung vor mir, weiß allerdings nicht, warum die Argumentation so gilt. Und zwar:

Sei [mm] f_{p} [/mm] f modulo p gerechnet.
[mm] f_{2} [/mm] zerfällt in einen Linearfaktor und ein Polynom vom Grad 3.
[mm] f_{3} [/mm] ist irreduzibel, hat also insbesondere keine Nullstelle.
[mm] \Rightarrow [/mm] f irreduzibel in [mm] \IZ[X]. [/mm]

Jetzt frage ich mich eben, warum und wie man von der Darstellung von f in verschiedenen Restklassenkörpern (oder reichen sogar Ringe) auf die Irreduzibilität in [mm] \IZ[X] [/mm] schließen kann?
Und dann hab ich schon mehrfach gelesen, dass aufgrund des Lemmas von Gauß gilt: f irreduzibel in [mm] \IZ[X] \Rightarrow [/mm] f irreduzibel in [mm] \IQ[X]. [/mm]
Somit wäre ich dann ja durch.
Kann mir jemand weiterhelfen?
Danke schonmal!
Viele Grüße!
skoopa

        
Bezug
Irreduzibilität von Polynomen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 So 04.07.2010
Autor: steppenhahn

Hallo skoopa [ :-) ],

> Sei [mm]f:=X^4+3X^3+X^2-2X+1 \in \IZ[X][/mm] ein Polynom.
>  Folgern Sie: f ist in [mm]\IQ[X][/mm] irreduzibel.
>  Hallo Freunde der Algebra!
>  Ich bearbeite grad schon seit einiger Weile die obige
> Aufgabe. Leider komme ich nicht weiter. Ich habe eine
> Lösung vor mir, weiß allerdings nicht, warum die
> Argumentation so gilt. Und zwar:
>  
> Sei [mm]f_{p}[/mm] f modulo p gerechnet.
>  [mm]f_{2}[/mm] zerfällt in einen Linearfaktor und ein Polynom vom
> Grad 3.
>  [mm]f_{3}[/mm] ist irreduzibel, hat also insbesondere keine
> Nullstelle.
>  [mm]\Rightarrow[/mm] f irreduzibel in [mm]\IZ[X].[/mm]
>  
> Jetzt frage ich mich eben, warum und wie man von der
> Darstellung von f in verschiedenen Restklassenkörpern
> (oder reichen sogar Ringe) auf die Irreduzibilität in
> [mm]\IZ[X][/mm] schließen kann?
>  Und dann hab ich schon mehrfach gelesen, dass aufgrund des
> Lemmas von Gauß gilt: f irreduzibel in [mm]\IZ[X] \Rightarrow[/mm]
> f irreduzibel in [mm]\IQ[X].[/mm]
>  Somit wäre ich dann ja durch.

Hier habe ich das schon gefragt.

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]