Optimierung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Die Firma Asien Tee ist als Hersteller von dekorativen Teedosen aus metall zur Aufbewahrung von losen Tees bekannt. Die großen Mengen stellen dabei sowoh bei ihrer Herstellung / Energiebedarf / Verschnitt als auch beim Recycling bzw. auf Mülldeponien eine starke Belastung für die Umwelt dar. Deshalb haben sich die Geschäftsführer zum Ziel gesetzt, mit 500cm² Blech pro Dose auszukommen. Die Teedose soll aus produktionsbedingten Gründen eine quadratische Grundfläche haben!
A Wie sind die Maße / Kantenlänge a der Grundfläche, Höhe h / zu wählen damit die größtmögliche Menge an Tee in die Dose gefüllt werden kann. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt!
Wie lautet die Formel hierzu?
|
|
|
|
> Die Firma Asien Tee ist als Hersteller von dekorativen
> Teedosen aus metall zur Aufbewahrung von losen Tees
> bekannt. Die großen Mengen stellen dabei sowoh bei ihrer
> Herstellung / Energiebedarf / Verschnitt als auch beim
> Recycling bzw. auf Mülldeponien eine starke Belastung für
> die Umwelt dar. Deshalb haben sich die Geschäftsführer
> zum Ziel gesetzt, mit 500cm² Blech pro Dose auszukommen.
> Die Teedose soll aus produktionsbedingten Gründen eine
> quadratische Grundfläche haben!
> A Wie sind die Maße / Kantenlänge a der Grundfläche,
> Höhe h / zu wählen damit die größtmögliche Menge an
> Tee in die Dose gefüllt werden kann.
Hallo,
.
Vielleicht hattet Ihr eine Skizze oder eine weitere Information zur Aufgabe?
Entscheidend für den Materialbedarf wäre nämlich, ob die Dose mit oder ohne Deckel sein soll.
> Wie lautet die Formel hierzu?
Nun, ich denke, das Volumen einer Dose, die eine quadratische Grundfläche mit der Seitenlänge a und die Höhe h hat, kannst Du doch hinschreiben, oder?
V=...
Das Volumen soll nun maximiert werden, wir sollen das a und h finden, mit welchen wir das größtmögliche Volumen erreichen.
(Hauptbedingung)
Nun sind wir nicht ganz frei in der Wahl der beiden Größen, denn wir dürfen nicht mehr als [mm] 500cm^2 [/mm] an Material verbrauchen.
Dieser Zwang liefert un´s eine weitere Bedingung, die Nebenbedingung: [mm] 500cm^2= [/mm] Oberfläche der Dose.
Diese Oberfläche mußt Du nun mithilfe von a und h ausdrücken.
Sie besteht, je nachdem, ob sie mit oder ohne Deckel ist, aus 5 oder 6 Rechtecken, unten, (ggf. oben), rechts, links, hinten, vorn.
500=...
Wenn Du das hast: Nebenbedingung nach einer Variablen auflösen,
einsetzen in die Hauptbedingung, Extremwertberechnung durchführen.
Versuch's mal.
Bei Problemen poste, was Du bisher getan und erreicht hast,
dann kann man Dir weiterhelfen.
LG Angela
|
|
|
|