matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationPartielle Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Partielle Integration
Partielle Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 05:24 So 25.04.2010
Autor: ChopSuey

Aufgabe
Zeigen Sie mit Hilfe partieller Integration, dass

$\ [mm] \integral_{0}^{2\pi}{\sin(nx)\sin(mx) dx} [/mm] = [mm] \begin{cases} \pi, & \mbox{für } n =m \\ 0, & \mbox{für } n \not= m \end{cases} [/mm] $

Hallo,

ich habe Schwierigkeiten damit, die Aufgabe zu lösen.

Sei $\ f(x) = [mm] \sin(nx) [/mm] $ und $\ g'(x) = [mm] \sin(mx) \gdw [/mm] g(x) = [mm] -\frac{1}{m}\cos [/mm] mx $

Dann gilt

$\ [mm] \integral_{0}^{2\pi}{\sin(nx)\sin(mx) dx} [/mm] = [mm] \left[-\frac{1}{m}\sin(nx)\cos(mx) \right] _{0}^{2\pi} [/mm] +  [mm] \frac{n}{m}\integral_{0}^{2\pi}{\cos(mx)\cos(mx) dx} [/mm] $

Das Problem das ich habe, ist, dass $\ [mm] \left[-\frac{1}{m}\sin(nx)\cos(mx) \right] _{0}^{2\pi} [/mm] $ immer zu Null wird und ich dann diese beiden Integrale gegenüber stehen habe.
Doch wie mach ich weiter?
Ist bis dahin überhaupt alles richtig?

Freue mich über Hilfe!

Grüße
ChopSuey


        
Bezug
Partielle Integration: Querverweis
Status: (Antwort) fertig Status 
Datum: 07:31 So 25.04.2010
Autor: Loddar

Hallo ChopSuey!


Siehe mal hier, da wurde dieselbe Aufgabe bereits behandelt?


Gruß
Loddar


Bezug
                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:41 So 25.04.2010
Autor: ChopSuey

Morgen Loddar,

danke für deinen Querverweis.

Ich kann den Ansätzen von Igor nur leider nichts entnehmen. Die Rechenwege sind nur bruchstückhaft wiedergegeben und man erkennt auch nicht viel, finde ich.

Du kannst meinen Thread aber natürlich gerne in den von Igor verschieben, wenn du möchtest.

Würde mich dennoch freuen, wenn mir jemand einen Tip geben kann bzw. auf Fehler hinweisen kann, sofern welche vorliegen.

Viele Grüße
ChopSuey

Bezug
                        
Bezug
Partielle Integration: weiter rechnen
Status: (Antwort) fertig Status 
Datum: 08:02 So 25.04.2010
Autor: Loddar

Hallo ChopSuey!


Ich sehe bisher keinen Fehler in Deiner Rechnung. Was sört Dich daran, dass der vordere Term zu Null wird?

Wende auf das rechte Integral wiederum partielle Integration an. Anschließend musst Du noch eine Fallunterscheidung für $n \ = \ m$ bzw. $n \ [mm] \not= [/mm] \ m$ machen.

Oder Du betrachtest den Fall $n \ [mm] \not= [/mm] \ m$ gleich für das Ausgangsintegral.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]