matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperRinge, Primzahlen, ggT
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Ringe, Primzahlen, ggT
Ringe, Primzahlen, ggT < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ringe, Primzahlen, ggT: Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:38 Do 15.07.2010
Autor: Study1988

Aufgabe
Beweisen Sie:
Für m [mm] \in \IN [/mm] ohne der 1 gilt:
(Rm, +, *) ist genau dann Körper, wenn m eine Primzahl ist.

Ich habe mich an der Aufgabe versucht und habe folgendes dazu aufgeschrieben:

1. Definition eines Körpers:
(R,+, *) ist Ring, 2. (R,* ohne der 0) ist kommutative Gruppe
Ich setze weiter voraus, dass (R,+) kommutative Gruppe ist, wenn m Primzahl ist.
Es geht mir also "nur" um den zweiten Teil.
(Wurde in der Übung eben genau so gehandhabt, von der habe ich mich auf den Teil beschränkt, hatte damit zudem schon meine Probleme, das richtig in Worte zu fassen)

Beweis:

(R,*)
In (R*) ist das Einselement das neutrale Element.
Da in einer Gruppe jedes Element invertierbar ist, muss auch hier für Rm gelten:
Für alle a [mm] \in [/mm] R: a * a^-1 = 1 (in Rm)

Dies ist allerdings nur möglich (nach Satz "Lösbarkeitsbedingung von Restklassengleichungen), wenn der ggT (a,m) ein Teiler ist von 1, was wiederum nur dann gegeben ist, wenn ggT (a,m) =1 ist.

Da m nur zwei Teiler hat, wenn m Primzahl ist, nämlich 1 und sich selbst, ist Rm Gruppe (neutrales Element ist das Einselement, R* ist algebraische Struktur (wurde schon bewiesen und jedes Element ist invertierbar).

Ja, die Kommutativität hab ich einfach mal weggelassen -.- und hab dann gesagt, dass ich fertig bin mit dem Beweis -.-
irgendwie so?

Vielen Dank schon mal für eure Hilfe

        
Bezug
Ringe, Primzahlen, ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Fr 16.07.2010
Autor: schachuzipus

Hallo Studi1988,

mit ein bisschen Suchen im Forum findet sich zb. dies

Hilft das?

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]