Stetige Fortsetzbarkeit < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Wir betrachten die Menge $M := [mm] \{ x = (x_1, x_2) \in \mathbb{R} | x_1 > \sqrt{|x_2|}\}$ [/mm] und die Funktion $g: M [mm] \to \mathbb{R}$ [/mm] mit $g(x) := [mm] \frac{x_1}{\|x\|_2}$, [/mm] $x = [mm] (x_1, x_2) \in [/mm] M$. Zeigen Sie, dass $g$ in $(0,0)$ stetig fortsetzbar ist. Hinweis: Betrachten Sie zunächst die Folge [mm] $((\frac{1}{n}, [/mm] 0))$ mit $n [mm] \in \mathbb{N}$, [/mm] um einen Kandidaten für die stetige Fortsetzung in $(0,0)$ zu finden. Verwenden Sie anschließend das [mm] $\epsilon$-$\delta$-Kriterium. [/mm] |
Hallo,
wir sind in unserer Übungsgruppe allesamt ratlos. Mit dem Hinweis der Folge haben wir den Kandidaten ($=1$) gefunden. Aber beim Rest verzetteln wir uns im Nirvana. Am Ende brauchen wir einen Ausdruck [mm] $\|x\|_2 [/mm] < [mm] \delta$ [/mm] für [mm] $\delta [/mm] = [mm] f(\epsilon)$. [/mm] Darauf konnten wir uns einigen. Uns ist auch klar, dass in der Lösung sicher irgendwo verwendet werden muss, dass [mm] $x_1 [/mm] > [mm] \sqrt{x_2}$. [/mm] Leider fehlt uns da die zündende Idee. Und die ganzen Fallunterscheidungen ...
Vielen Dank und Gruß,
Martin
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:57 Sa 08.05.2021 | Autor: | sancho1980 |
Sorry für diese hilflose Frage am späten Abend, aber es soll auch keiner denken, wir machen uns keine eigenen Gedanken:
$|1 - [mm] \frac{x_1}{\sqrt{{x_1}^2 + {x_2}^2}}| [/mm] = 1 - [mm] \frac{x_1}{\sqrt{{x_1}^2 + {x_2}^2}} [/mm] = [mm] \frac{\sqrt{{x_1}^2 + {x_2}^2} - x_1}{\sqrt{{x_1}^2 + {x_2}^2}} \le \frac{|x_1| + |x_2| - |x_1|}{\sqrt{{x_1}^2 + {x_2}^2}} [/mm] = [mm] \frac{|x_2|}{\sqrt{{x_1}^2 + {x_2}^2}} [/mm] < [mm] \frac{{x_1}^2}{\sqrt{{x_1}^2 + {x_2}^2}} \le \frac{{x_1}^2 + {x_2}^2}{\sqrt{{x_1}^2 + {x_2}^2}} [/mm] = [mm] \sqrt{{x_1}^2 + {x_2}^2}$
[/mm]
Juchhu ...
|
|
|
|
|
Hiho,
> Wir betrachten die Menge [mm]M := \{ x = (x_1, x_2) \in \mathbb{R} | x_1 > \sqrt{|x_2|}\}[/mm]
Du meinst sicherlich [mm]M := \{ x = (x_1, x_2) \in \mathbb{R}^2 | x_1 > \sqrt{|x_2|}\}[/mm]
> $ |1 - [mm] \frac{x_1}{\sqrt{{x_1}^2 + {x_2}^2}}| [/mm] = 1 - [mm] \frac{x_1}{\sqrt{{x_1}^2 + {x_2}^2}} [/mm] = [mm] \frac{\sqrt{{x_1}^2 + {x_2}^2} - x_1}{\sqrt{{x_1}^2 + {x_2}^2}} \le \frac{|x_1| + |x_2| - |x_1|}{\sqrt{{x_1}^2 + {x_2}^2}} [/mm] = [mm] \frac{|x_2|}{\sqrt{{x_1}^2 + {x_2}^2}} [/mm] < [mm] \frac{{x_1}^2}{\sqrt{{x_1}^2 + {x_2}^2}} \le \frac{{x_1}^2 + {x_2}^2}{\sqrt{{x_1}^2 + {x_2}^2}} [/mm] = [mm] \sqrt{{x_1}^2 + {x_2}^2} [/mm] $
Soweit ok, kannst du jede Umformung auch begründen?
Insbesondere wieso
> [mm] \frac{\sqrt{{x_1}^2 + {x_2}^2} - x_1}{\sqrt{{x_1}^2 + {x_2}^2}} \le \frac{|x_1| + |x_2| - |x_1|}{\sqrt{{x_1}^2 + {x_2}^2}}$
[/mm]
gilt? Also dass sie gilt, ist mir klar… dir aber auch?
Gruß,
Gono
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:55 Sa 08.05.2021 | Autor: | sancho1980 |
Hallo Gono,
ja es ist wegen der Dreiecksungleichung ...
Gruß,
Martin
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:09 Sa 08.05.2021 | Autor: | Gonozal_IX |
Hiho,
> ja es ist wegen der Dreiecksungleichung ...
na dann zeig doch mal!
Gruß,
Gono
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:22 So 09.05.2021 | Autor: | donmarcos |
Es ist die Dreiecksungleichung im "ursprünglichen" (geometrischen) Sinn:
Betrachte ich ein rechtwinkliges Dreieck mit Kathete 1 = [mm] |x_{1}|, [/mm] Kathete 2 = [mm] |x_{2}| [/mm] dann hat die Hypothenuse bekanntermaßen laut eines Herrn Pythagoras die Länge [mm] \wurzel{x_{1}^{2} + x_{2}^{2}}.
[/mm]
Und die Summe der Katheten ist in einem rechtwinkligen Dreieck größer (oder gleich im Falle [mm] x_{i} [/mm] = 0) als die Länge der Hypothenuse.
PS: Ich gehöre auch zu obiger Lerngruppe :)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:11 So 09.05.2021 | Autor: | Gonozal_IX |
Hiho,
soweit klar, und wie wird aus dem [mm] $x_1$ [/mm] ein [mm] $|x_1|$?
[/mm]
Nur damit kein falscher Eindruck entsteht: Mir ist klar warum, will nur wissen ob euch auch...
Gruß,
Gono
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:37 So 09.05.2021 | Autor: | donmarcos |
Bin ncht ganz sicher welche Stelle du meinst, aber die [mm] (x_1, x_2) [/mm] die wir betrachten sind (müssen) alle Elemente der (Definitions-) Menge M sein.
Und für diese Elemente muss gelten, daß [mm] x_1 [/mm] > [mm] \wurzel{|x_2|}, [/mm] also muss [mm] x_1 [/mm] > 0 sein und deswegen darf man schreiben: [mm] x_1 [/mm] = [mm] |x_1|
[/mm]
|
|
|
|