partielle Ableitungen < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:12 Mo 16.11.2009 | Autor: | hans82 |
hallo,
ich habe folgende funktion:
[mm] lnL_{i}=&-\bruch{m_{i}}{2}ln(\sigma^{2})-\frac{m_i}{2}ln(2\pi)-\frac{1}{2}\sum_{k=2}^{m_i}ln(1-e^{-\lambda s_{ik}})\\
[/mm]
[mm] &-\frac{1}{2\sigma^2}\bigg(\varepsilon(t_{i1})^2+\sum_{k=2}^{m_i}\frac{(\varepsilon(t_{ik})-\varepsilon(t_{i(k-1)})e^{-\frac{\lambda}{2}s_{ik}})^2}{1-e^{-\lambda s_{ik}}}\bigg)\\
[/mm]
und suche nun die partiellen Ableitungen:
[mm] \frac{\partial lnL}{\partial \sigma^2}=&-\frac{m_i}{2\sigma^2}+\frac{1}{2\sigma^4}\bigg(\varepsilon(t_{i1})^2+\sum_{k=2}^{m_i}\frac{(\varepsilon(t_{ik})-\varepsilon(t_{i(k-1)})e^{\frac{-\lambda}{2}s_{ik}})^2}{1-e^{-\lambda s_{ik}}}\bigg)\\
[/mm]
[mm] \frac{\partial lnL}{\partial \lambda}=& [/mm] ?
bin ich den soweit auf dem richtigen weg? wie muss ich bei der ableitung nach [mm] \lambda [/mm] vorgehen?
vielen dank für eure hilfe!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo hans82,
> hallo,
> ich habe folgende funktion:
>
> [mm]lnL_{i}=&-\bruch{m_{i}}{2}ln(\sigma^{2})-\frac{m_i}{2}ln(2\pi)-\frac{1}{2}\sum_{k=2}^{m_i}ln(1-e^{-\lambda s_{ik}})\\[/mm]
>
> [mm]&-\frac{1}{2\sigma^2}\bigg(\varepsilon(t_{i1})^2+\sum_{k=2}^{m_i}\frac{(\varepsilon(t_{ik})-\varepsilon(t_{i(k-1)})e^{-\frac{\lambda}{2}s_{ik}})^2}{1-e^{-\lambda s_{ik}}}\bigg)\\[/mm]
>
> und suche nun die partiellen Ableitungen:
>
> [mm]\frac{\partial lnL}{\partial \sigma^2}=&-\frac{m_i}{2\sigma^2}+\frac{1}{2\sigma^4}\bigg(\varepsilon(t_{i1})^2+\sum_{k=2}^{m_i}\frac{(\varepsilon(t_{ik})-\varepsilon(t_{i(k-1)})e^{\frac{-\lambda}{2}s_{ik}})^2}{1-e^{-\lambda s_{ik}}}\bigg)\\[/mm]
>
> [mm]\frac{\partial lnL}{\partial \lambda}=&[/mm] ?
>
> bin ich den soweit auf dem richtigen weg? wie muss ich bei
> der ableitung nach [mm]\lambda[/mm] vorgehen?
Nun differenziere die Ausdrücke in den Summen nach [mm]\lambda[/mm]:
[mm]\bruch{\partial}{\partial \lambda}\sum_{k=2}^{m_i}ln(1-e^{-\lambda s_{ik}})=\sum_{k=2}^{m_i}\bruch{\partial}{\partial \lambda}\left( \ ln(1-e^{-\lambda s_{ik}}) \ \right)[/mm]
>
> vielen dank für eure hilfe!
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:31 Mo 16.11.2009 | Autor: | hans82 |
[mm] \bruch{\partial}{\partial \lambda}=\frac{-s_{ik}e^{-\lambda s_{ik}}}{1-e^{-\lambda s_{ik}}}
[/mm]
stimmt das?
|
|
|
|
|
Hallo hans82,
> [mm]\bruch{\partial}{\partial \lambda}=\frac{-s_{ik}e^{-\lambda s_{ik}}}{1-e^{-\lambda s_{ik}}}[/mm]
>
> stimmt das?
Bis auf einen Vorzeichenfehler stimmt das:
[mm]\bruch{\partial}{\partial \lambda}=\frac{\red{+}s_{ik}e^{-\lambda s_{ik}}}{1-e^{-\lambda s_{ik}}}[/mm]
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:43 Mo 16.11.2009 | Autor: | hans82 |
also ist zu meiner obigen funktion die
[mm] \frac{\partial lnL}{\partial \lambda}=-0,5 \sum \frac{s_{ik}e^{-\lambda s_{}ik}}{1-e^{-\lambda s_{ik}}}-\frac{1}{\sigma^{2}}\sum \frac{e^{-\frac{\lambda}{2}s_{ik}}(-0,5s_{ik})}{e^{-\lambda s_{ik}}(-s_{ik})}
[/mm]
???
|
|
|
|
|
Hallo hans82,
> also ist zu meiner obigen funktion die
> [mm]\frac{\partial lnL}{\partial \lambda}=-0,5 \sum \frac{s_{ik}e^{-\lambda s_{}ik}}{1-e^{-\lambda s_{ik}}}-\frac{1}{\sigma^{2}}\sum \frac{e^{-\frac{\lambda}{2}s_{ik}}(-0,5s_{ik})}{e^{-\lambda s_{ik}}(-s_{ik})}[/mm]
>
> ???
Für die Summe
[mm]\sum_{k=2}^{m_i}\frac{(\varepsilon(t_{ik})-\varepsilon(t_{i(k-1)})e^{-\frac{\lambda}{2}s_{ik}})^2}{1-e^{-\lambda s_{ik}}}\bigg[/mm]
ist die Quotientenregel anzuwenden.
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:24 Mo 16.11.2009 | Autor: | hans82 |
hallo mathepower,
wie konnte ich nur so einen fehler machen...
[mm] u=(\varepsilon(t_{ik})-\varepsilon(t_{i(k-1)})e^{-\frac{\lambda}{2}s_{ik}})^2
[/mm]
[mm] u'=-s_{ik}e^{-0,5\lambda s_{ik}}(\varepsilon(t_{ik})-\varepsilon(t_{i(k-1)})e^{-\frac{\lambda}{2}s_{ik}})
[/mm]
[mm] v=1-e^{-\lambda s_{ik}}
[/mm]
[mm] v'=s_{ik}e^{-\lambda s_{ik}}
[/mm]
und damit dann:
[mm] \frac{\partial lnL}{\partial \lambda}=-\frac{1}{2\sigma^2}\sum\frac{-s_{ik}e^{-0,5\lambda s_{ik}}(\varepsilon(t_{ik})-\varepsilon(t_{i(k-1)})e^{-\frac{\lambda}{2}s_{ik}})(1-e^{-\lambda s_{ik}})-s_{ik}e^{-\lambda s_{ik}}(\varepsilon(t_{ik})-\varepsilon(t_{i(k-1)})e^{-\frac{\lambda}{2}s_{ik}})^2}{(1-e^{-\lambda s_{ik}})^2}
[/mm]
LG Hans
|
|
|
|
|
Hallo hans82,
> hallo mathepower,
> wie konnte ich nur so einen fehler machen...
>
> [mm]u=(\varepsilon(t_{ik})-\varepsilon(t_{i(k-1)})e^{-\frac{\lambda}{2}s_{ik}})^2[/mm]
>
> [mm]u'=-s_{ik}e^{-0,5\lambda s_{ik}}(\varepsilon(t_{ik})-\varepsilon(t_{i(k-1)})e^{-\frac{\lambda}{2}s_{ik}})[/mm]
Es fehlt hier der Faktor [mm]-\varepsilon(t_{i(k-1)})[/mm]
Damit ergibt sich:
[mm]u'=\left(\red{-\varepsilon(t_{i(k-1)})}\right)*\left(-s_{ik}\right)e^{-0,5\lambda s_{ik}}(\varepsilon(t_{ik})-\varepsilon(t_{i(k-1)})e^{-\frac{\lambda}{2}s_{ik}})[/mm]
>
> [mm]v=1-e^{-\lambda s_{ik}}[/mm]
>
> [mm]v'=s_{ik}e^{-\lambda s_{ik}}[/mm]
>
> und damit dann:
> [mm]\frac{\partial lnL}{\partial \lambda}=-\frac{1}{2\sigma^2}\sum\frac{-s_{ik}e^{-0,5\lambda s_{ik}}(\varepsilon(t_{ik})-\varepsilon(t_{i(k-1)})e^{-\frac{\lambda}{2}s_{ik}})(1-e^{-\lambda s_{ik}})-s_{ik}e^{-\lambda s_{ik}}(\varepsilon(t_{ik})-\varepsilon(t_{i(k-1)})e^{-\frac{\lambda}{2}s_{ik}})^2}{(1-e^{-\lambda s_{ik}})^2}[/mm]
Dies ist ja nur die partielle Ableitung der zweiten Summe nach [mm]\lambda[/mm].
>
>
> LG Hans
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:14 Mo 16.11.2009 | Autor: | hans82 |
hallo MathePower,
wo sind nur meine Gedanken...
so nun hoffentlich richitg...
[mm] \frac{\partial lnL}{\partial \lambda}=&-\frac{1}{2}\sum_{k=2}^{m_i}\frac{s_{ik}e^{-\lambda s_{ik}}}{1-e^{-\lambda s_{ik}}}-\frac{1}{2\sigma^2}\sum_{k=2}^{m_i}\frac{\varepsilon(t_{i(k-1)})s_{ik}e^{-0,5\lambda s_{ik}}(\varepsilon(t_{ik})-\varepsilon(t_{i(k-1)})e^{-\frac{\lambda}{2}s_{ik}})(1-e^{-\lambda s_{ik}})-(s_{ik}e^{-\lambda s_{ik}}(\varepsilon(t_{ik})-\varepsilon(t_{i(k-1)})e^{-\frac{\lambda}{2}s_{ik}})^2)}{(1-e^{-\lambda s_{ik}})^2}
[/mm]
lässt sich da noch was zusammen fassen?
vielen lieben Dank für die Unterstützung!
Hans
|
|
|
|
|
Hallo hans82,
> hallo MathePower,
>
> wo sind nur meine Gedanken...
>
>
> so nun hoffentlich richitg...
>
> [mm]\frac{\partial lnL}{\partial \lambda}=&-\frac{1}{2}\sum_{k=2}^{m_i}\frac{s_{ik}e^{-\lambda s_{ik}}}{1-e^{-\lambda s_{ik}}}-\frac{1}{2\sigma^2}\sum_{k=2}^{m_i}\frac{\varepsilon(t_{i(k-1)})s_{ik}e^{-0,5\lambda s_{ik}}(\varepsilon(t_{ik})-\varepsilon(t_{i(k-1)})e^{-\frac{\lambda}{2}s_{ik}})(1-e^{-\lambda s_{ik}})-(s_{ik}e^{-\lambda s_{ik}}(\varepsilon(t_{ik})-\varepsilon(t_{i(k-1)})e^{-\frac{\lambda}{2}s_{ik}})^2)}{(1-e^{-\lambda s_{ik}})^2}[/mm]
Ja.
>
> lässt sich da noch was zusammen fassen?
Auf den ersten Blick nicht.
Das Kürzen einzelner Summanden des Zählers gegen den Nenner ist möglich.
>
> vielen lieben Dank für die Unterstützung!
> Hans
Gruss
MathePower
|
|
|
|