MatheRaum - Offene Informations- und Nachhilfegemeinschaft für Mathematik
URL: http://matheraum.de/wissen/Umkehrfunktion&source=1


Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Umkehrfunktion

Definition Umkehrfunktion


Schule

Eine Funktion f ist umkehrbar, wenn es zu jedem $ y \in \IW_f $ auch nur genau ein $ x \in \ID_f $ gibt, d.h. wenn die Zuordnungen $ x \rightarrow y $ und $ y \rightarrow x $ beide eindeutig sind.
Die Umkehrfunktion wird i.a. mit $ f^{-1} $ bezeichnet.

Wenn eine Funktion in einem Intervall streng monoton ist, dann ist jedem x aus dem Intervall genau ein y zugeordnet und umgekehrt. Somit ist die Funktion in diesem Monotoniebereich umkehrbar.

Bei der Bildung der Umkehrfunktion werden die Paare (x|y) vertauscht zu (y|x).
Man kann also die Funktionsgleichung der Umkehrfunktion bestimmen, indem man in der Funktionsgleichung y = f(x) die Variablen x und y vertauscht und diese Gleichung (falls möglich) nach y auflöst.

Dadurch vertauschen sich auch Definitionsbereich und Wertebereich.

Daraus ergibt sich auch der Graph der Umkehrfunktion:
der Graph von f wird an der (Haupt-)Winkelhalbierenden $ y = x $ gespiegelt.


Beispiel

siehe SchulMatheFAQ: Umkehrfunktionbestimmung



Universität

Seien $ D $ und $ Z $ nichtleere Mengen.
Ist eine Funktion $ f:D \rightarrow Z $ bijektiv, so existiert eine Funktion $ f^{-1}: Z \rightarrow D $ mit folgenden zwei Eigenschaften:
1.) $ f^{-1} \circ f=id_D $
2.) $ f \circ f^{-1}=id_Z $

In diesem Fall heißt $ f^{-1} $ die Umkehrfunktion von $ f $.
Die Funktion $ id_D $ (bzw. $ id_Z $) ist dabei die Identität auf $ D $ (bzw. $ Z $).


Beispiele.

1.) Die Funktion $ f:[0;\infty[ $  $ \rightarrow $  $ ]-\infty;-3] $ definiert durch $ f(x):=-x^3-3 $ ist bijektiv.
Wir berechnen die zugehörige Umkehrfunktion:
Dazu geben wir uns ein festes $ y $ aus dem Zielbereich der Funktion $ f $ vor und suchen ein $ x $ aus dem Definitionsbereich mit $ f(x)=y $. Wir haben also die Gleichung $ -x^3-3=y $ nach $ x $ aufzulösen:

$ -x^3-3=y $
$ \gdw $
$ -x^3=y+3 $
$ \gdw $
$ x^3=-y-3 $
$ \gdw $
$ x=\wurzel[3]{-y-3} $

Die Umkehrfunktion zu obiger Funktion $ f $ ist also gegeben durch die Vorschrift:
$ f^{-1}(y)=\wurzel[3]{-y-3} $.
Da man Funktionen meist in Abhängigkeit vom Parameter $ x $ schreibt, schreiben wir anstelle des Parameters $ y $ den Parameter $ x $:
$ f^{-1}(x)=\wurzel[3]{-x-3} $
Somit gelangen wir zum Ergebnis:
Die Umkehrfunktion zu der (bijektiven) Funktion $ f:[0;\infty[ $  $ \rightarrow $  $ ]-\infty;-3] $ definiert durch $ f(x):=-x^3-3 $ ist gegeben durch:
$ f^{-1}: ]-\infty;-3] $  $ \rightarrow $  $ [0;\infty[ $ und der Rechenvorschrift $ f^{-1}(x)=\wurzel[3]{-x-3} $.


Bemerkungen.

1.) Die Umkehrfunktion $ f^{-1} $ einer bijektiven Funktion $ f:D \rightarrow Z $ ordnet jedem Element aus dem Zielbereich $ Z $ genau ein Element des Definitionsbereiches zu.

2.) Ist $ f:D \rightarrow Z $ bijektiv, so ist auch die Umkehrfunktion $ f^{-1}:Z \rightarrow D $ eine bijektive Funktion.

3.) Man beachte, dass man $ f^{-1} $ lediglich als Symbol für die Umkehrfunktion einer Funktion $ f $ (im Falle der Existenz der Umkehrfunktion; also wenn $ f $ bijektiv ist) benutzt. Die Gefahr der Verwechslung mit dem Ausdruck $ \frac{1}{f} $ wird meist ausgeschlossen, weil sich meist aus dem Zusammenhang ergibt, ob $ f^{-1} $ als Symbol für die Umkehrfunktion (einer Funktion $ f $) benutzt wird oder nicht.

Erstellt: Fr 08.10.2004 von Marcel
Letzte Änderung: Do 10.02.2005 um 17:41 von DaMenge
Weitere Autoren: Marc
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

© Copyright 2003-25 www.matheraum.de
Der Inhalt dieser Seite kann -- sofern nicht anders lautend gekennzeichnet -- durch jedermann gemäß den Bestimmungen der Lizenz für Freie Inhalte genutzt werden.