matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnung1. Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - 1. Ableitung
1. Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1. Ableitung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:44 Mo 17.03.2008
Autor: satsch

Aufgabe
Geben Sie die 1. Ableitung f'(x) an:
[mm] f(x)=(\wurzel{x+2})*x [/mm]

Hallo,
ich komme bei dieser Aufgabe einfach nicht weiter, da ich keine Ahnung habe, wie ich eine Wurzel ableite...
Wäre super, wenn mir jemand helfen könnte
Liebe Grüße

        
Bezug
1. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Mo 17.03.2008
Autor: MathePower

Hallo satsch,

> Geben Sie die 1. Ableitung f'(x) an:
>  [mm]f(x)=(\wurzel{x+2})*x[/mm]
>  Hallo,
>  ich komme bei dieser Aufgabe einfach nicht weiter, da ich
> keine Ahnung habe, wie ich eine Wurzel ableite...

Die Wurzel kannst nach den Potenzgesetzen so schreiben:

[mm]\wurzel{x+2}=\left(x+2\right)^{\bruch{1}{2}}[/mm]

Damit kann [mm]\left(x+2\right)^{\bruch{1}{2}}[/mm] nach der Potenzregel abgeleitet werden.

Da [mm]\left(x+2\right)^{\bruch{1}{2}}[/mm] eine verkettete Funktion ist, erfolgt weiterhin die Ableitung nach der  Kettenregel

>  Wäre super, wenn mir jemand helfen könnte
>  Liebe Grüße

Gruß
MathePower

Bezug
                
Bezug
1. Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Mo 17.03.2008
Autor: satsch

Hallo Mathe Power,

danke erstmal...

Die Potenzregel hatte ich bereits angewendet, nur auf die Kettenregel kam ich nicht.

Nach innerer und äußerer Ableitung kam ich also auf:

f'(x) = [mm] \bruch{1}{2*\wurzel{x+2}} [/mm]  

und somit auf die "End-Ableitung:

f'(x) =  [mm] \bruch{3x+4}{2*\wurzel{x+2}} [/mm]

wäre super, wenn du mir sagen könntest, ob das stimmt...

Liebe Grüße

Bezug
                        
Bezug
1. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Mo 17.03.2008
Autor: schachuzipus

Hallo satsch,

> Hallo Mathe Power,
>  
> danke erstmal...
>  
> Die Potenzregel hatte ich bereits angewendet, nur auf die
> Kettenregel kam ich nicht.
>
> Nach innerer und äußerer Ableitung kam ich also auf:
>  
> f'(x) = [mm]\bruch{1}{2*\wurzel{x+2}}[/mm]   [ok]
>
> und somit auf die "End-Ableitung:
>  
> f'(x) =  [mm]\bruch{3x+4}{2*\wurzel{x+2}}[/mm] [daumenhoch]
>  
> wäre super, wenn du mir sagen könntest, ob das stimmt...

Jau, das tut es ;-)

>  
> Liebe Grüße


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]